保险索赔

【保险大数据】保险行业大数据应用分析
更新时间:2019-11-23 19:25 浏览:76 关闭窗口 打印此页

  保险公司可以关联规则找出最佳险种销售组合、利用时序规则找出顾客生命周期中购买保险的时间顺序,从而把握保户提高保额的时机、建立既有保户再销售清单与规则,从而促进保单的销售。

  在客户细分的时候,除了风险偏好数据外,要结合客户职业、爱好、习惯、家庭结构、消费方式偏好数据,利用机器学习算法来对客户进行分类,并针对分类后的客户提供不同的产品和服务策略。

  总的来说,保险行业的大数据应用可以分为三大方面:客户细分及精细化营销、欺诈行为分析和精细化运营。

  基于企业内外部交易和历史数据,实时或准实时预测和分析欺诈等非法行为,包括医疗保险欺诈与滥用分析以及车险欺诈分析等。

  基于企业内外部运营、管理和交互数据分析,借助大数据台,全方位统计和预测企业经营和管理绩效。

  据统计,淘宝用户运费险索赔率在50%以上,该产品对保险公司带来的利润只有5%左右,但是有很多保险公司都有意愿去提供这种保险。

  但随着互联网、移动互联网以及大数据的发展,网络营销、移动营销和个性化的电话销售的作用将会日趋显现,越来越多的保险公司注意到大数据在保险行业中的作用。

  风险偏好是确定保险需求的关键。风险喜好者、风险中立者和风险厌恶者对于保险需求有不同的态度。

  通过大数据进行挖掘,综合考虑客户的信息、险种信息、既往出险情况、销售人员信息等,筛选出影响客户退保或续期的关键因素,并通过这些因素和建立的模型,对客户的退保概率或续期概率进行估计,找出高风险流失客户,及时预警,制定挽留策略,提高保单续保率。

  但是,保险公司可以通过自有数据以及客户在社交网络的数据,解决现有的风险控制问题,为客户制定个性化的保单,获得更准确以及更高利润率的保单模型,给每一位顾客提供个性化的解决方案。

  假设该客户购买并退货的是婴儿奶粉,我们就可以估计该客户家里有小孩,可以向其推荐关于儿童疾病险、教育险等利润率更高的产品。

  保险公司能够利用过去数据,寻找影响保险欺诈最为显着的因素及这些因素的取值区间,建立预测模型,并通过自动化计分功能,快速将理赔案件依照滥用欺诈可能性进行分类处理。(2)车险欺诈分析。

  基于保险保单和客户交互数据进行建模,借助大数据平台快速分析和预测再次发生或者新的市场风险、操作风险等。

  在网络营销领域,保险公司可以通过收集互联网用户的各类数据,如地域分布等属性数据,搜索关键词等即时数据,购物行为、浏览行为等行为数据,以及兴趣爱好、人脉关系等社交数据,可以在广告推送中实现地域定向、需求定向、偏好定向、关系定向等定向方式,实现精准营销。

  保险公司够利用过去的欺诈事件建立预测模型,将理赔申请分级处理,可以很大程度上解决车险欺诈问题,包括车险理赔申请欺诈侦测、业务员及修车厂勾结欺诈侦测等。

  保险公司可通过大数据整合客户线上和线下的相关行为,通过数据挖掘手段对潜在客户进行分类,细化销售重点。

  过去在没有精细化的数据分析和挖掘的情况下,保险公司把很多人都放在同一风险水平之上,客户的保单并没有完全解决客户的各种风险问题。

  因为客户购买运费险后保险公司就可以获得该客户的个人基本信息,包括手机号和银行账户信息等,并能够了解该客户购买的产品信息,从而实现精准推送。

  根据代理人员(保险销售人员)业绩数据、性别、年龄、入司前工作年限、其它保险公司经验和代理人人员思维性向测试等,找出销售业绩相对最好的销售人员的特征,优选高潜力销售人员。返回搜狐,查看更多

下一篇文章 :下一篇:选择一款适合自己的
友情链接:

公司地址:

监督热线: